Scaling of complex polymers: new universality classes and beyond

نویسنده

  • V. Blavatska
چکیده

V. Blavatska a,b , C. von Ferber and Yu. Holovatch a Institut für Theoretische Physik, Universität Leipzig, D-04103 Leipzig, Germany; Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, UA–79011 Lviv, Ukraine; Applied Mathematics Research Centre, Coventry University, Coventry, UK; Institute of Physics, Freiburg University, D-79104 Freiburg, Germany; e Institut für Theoretische Physik, Johannes Kepler Universität Linz, A-4040, Linz, Austria (Received 00 Month 200x; final version received 00 Month 200x)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Crosslinks to Collapse to Freezing: New Multicritical Point in Heteropolymers

We consider a two-letter self-avoiding lattice heteropolymer model of NH (out of N) attracting sites. At zero temperature, chain size scales as N1/dF (ρH = NH/N) with novel universal exponents describing asymptopia (d is space dimension). The phase diagram includes a new multicritical point at ρH < 1 where a line of collapse critical points ends at a freezing transition, with entropy approachin...

متن کامل

On the universality of compact polymers

Fully packed loop models on the square and the honeycomb lattice constitute new classes of critical behaviour, distinct from those of the low-temperature O(n) model. A simple symmetry argument suggests that such compact phases are only possible when the underlying lattice is bipartite. Motivated by the hope of identifying further compact universality classes we therefore study the fully packed ...

متن کامل

QCD traveling waves beyond leading logarithms

We derive the asymptotic traveling-wave solutions of the nonlinear 1-dimensional BalitskyKovchegov QCD equation for rapidity evolution in momentum-space, with 1-loop running coupling constant and equipped with the Balitsky-Kovchegov-Kuraev-Lipatov kernel at next-to-leading logarithmic accuracy, conveniently regularized by different resummation schemes. Traveling waves allow to define “universal...

متن کامل

On three-dimensional self-avoiding walk symmetry classes

In two dimensions the universality classes of self-avoiding walks (SAWs) on the square lattice, restricted by allowing only certain two-step configurations (TSCs) to occur within each walk, has been argued to be determined primarily by the symmetry of the set of allowed rules. In three dimensions early work tentatively found one (undirected) universality class different to that of unrestricted ...

متن کامل

Scaling properties of driven interfaces in disordered media.

We perform a systematic study of several models that have been proposed for the purpose of understanding the motion of driven interfaces in disordered media. We identify two distinct universality classes. (i) One of these, referred to as directed percolation depinning (DPD), can be described by a Langevin equation similar to the Kardar-Parisi-Zhang equation, but with quenched disorder. (ii) The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008